, ,

What Your Connected World Could Look Like in 2017

Marconi Connected World

By Vint Cerf
Co-authored by Paula Reinman

Thanks to contributions by Marconi Fellows and Young Scholars  John Cioffi, Giovanni Corazza, Martin E. Hellman, Joe Lukens, George MacCartney, Jr., Arogyaswami Paulraj, and Junwen Zhang.

The only thing we know for sure about our increasingly connected world is that we will be surprised by the consumer and business applications that take off over the next few years. Although CES buzzed with virtual reality, self-driving cars and the AI technology to help us use the free time we get when we take our hands off the wheel, it’s famously difficult to know what’s really going to catch on once the projected 20-30B connected devices are in use around 2020.

While we don’t purport to know what the next hot app will be, we do know a thing or two about the technologies that will enable our increasingly connected planet and the trends we expect to see this year.

We have some basic beliefs about the trajectory of technology that help shape these trends.  Specifically:

  • It can take 10+ years for technology to move from a laboratory to practical use cases and defined requirements for scale. Technologies like quantum communications, nanotechnology and 5G, which is just emerging from the lab, are in the early stages of their life cycles.
  • Technology reaches a tipping point where the underlying capabilities, such as processing power, speed and infrastructure, are in place to make significant leaps forward. Artificial and augmented intelligence, machine learning and security are now positioned to grow in capability, scale and economics.
  • Later on, when actual performance has been demonstrated, it’s most effective to standardize and scale given technologies, such as networking and optical communication. This is also the time when industries re-structure as players strive to extract profit from different parts of the value chain or struggle to re-define their business models to recover sustainability from disruptive change.

Here are a few trends that cover this technology maturity spectrum:

Quantum Key Distribution (QKD) technology emerges from the lab

What’s happening?

While it’s a bit early to call this a trend, quantum communications, and specifically quantum key distribution (QKD), is worth watching.  QKD uses weak photon communication to detect attempts to intercept communication intended to distribute cryptographic keys between parties. While communicating with quantum states of single photons offers resistance to intercept, QKD is relatively new and is still considered an early stage emerging technology.

Some practical barriers to application will be broken through a technique called continuous-variable QKD (CV-QKD), using bright laser pulses, rather than single photons, to carry quantum information.  This technology uses inexpensive detectors and the quantum signal can sustain much higher levels of noise, reducing costs for the actual key distribution.

As costs decrease and if the technology becomes more mainstream, this form of quantum communication may be used in wavelength and time-division multiplexing to increase the information encoded per photon, thereby boosting effective data transmission rates.

What should you look for?

We expect QKD to move from limited research labs, such as national labs and labs of very large organizations, into practical applications that can improve security within economic constraints. The Chinese experiment in QKD key distribution from space will be worth tracking in 2017 to see how well it works.

5G Tries out for the Seoul Olympics

What’s happening?

5G it isn’t just about making mobile access faster, it’s about creating a network that can cope with the demands of the future – a future where almost everything is connected to everything else.  Beyond smart phones, the 5G network will support the true Internet of Things, including smart homes, device to device connections and sensors.

Although we have been talking about 5G for years and the conversation will continue long into the future, we will see technologies associated with 5G entering into the marketplace in 2017. Standard-setters in different task and study groups are working very hard to set key techniques, formats and protocols for 5G mobile networks, making some key elements of 5G available to the world by the end of 2017.

Early 5G will still be focused on sub-6 GHz bands, but the 28 GHz and 39 GHz millimeter-wave frequencies look to be the early use cases for fixed wireless, and eventually mobile wireless. The USA, Japan, and South Korea have already agreed that 28 GHz should be a part of the next generation standard, and Samsung has been quite open about their plans for using this during the 2018 Winter Olympics.  Qualcomm issued a press release for a 28 GHz model to be released for consumers in 2018.

What should you look for?

It will be a techno-economic race to put down the first 5G flag, similar to what happened in previous cellular generations, with the added complexity that there is no globally agreed-to definition on what 5G actually is.  Expect to see plenty of companies, many countries and a multitude of technologies being touted as “the first.”

We will watch consumer and commercial adoption of fixed wireless millimeter-wave services and how equipment manufacturers (such as Ericsson, Huawei and NOKIA) and modem developers (such as Intel and Qualcomm), continue to investigate and pursue millimeter-wave mobile applications.  5G will also have a huge impact on the growth of hot technologies, like virtual and augmented reality.

Lastly, given the much higher streaming bandwidths that 5G enables, we should see more cord-cutting and a continued reduction in fixed line subscriptions for wireline service providers.

Everything connected – everything vulnerable

What’s happening?

For decades, there have been two distinct forces at work in the world of cyber security – government and technology.

Since 1975, when DES’ key size was set at 56 bits, government regulation has often played a larger role than technology in determining cyber-security.  National and global cyber-security was greatly improved when the two sides stopped fighting each other in the press and worked together to find solutions that benefited both sides.  Today, the standoff between government and the tech industry continues, largely over exceptional access, or the ability for law enforcement to have “backdoors” into connected devices to prevent and prosecute criminal activity.

On the technology side, our connected world will include over 2.6 billion smartphones, contributing to a much larger number of Internet of Things-connected devices.  These devices, along with increasing network access and bandwidth, have led to and will continue to attract an increasing number of DDoS and targeted attacks, including Phishing.

Our increased dependency on the network, as well as account vulnerability in operating systems and applications, will result in broader and deeper disruption when attacks occur.

What should you look for?

We expect to see continued friction between government and technology companies about the utility or risk of deploying security backdoors.  There will be efforts to reconcile government and technology companies’ views on exceptional access, leveraging past frameworks for success.

The already-continuous reports of hacking will increase.  Security applications for smart phones will be a hot space as both businesses and consumers try to outsmart hackers.

A new balance of power in the networking world

What’s happening?

As networking equipment becomes inexpensive and standardized, increasing software-definition and virtualization of communication networks will drive a new power structure in the networking space. Bare switches, without brand software and containing just enough software to download operating systems, may change the business models of the vertical past.

Creativity and growth will come from companies innovating in the service space.  Many of these will be small companies operating over the top of the standardized network, including home entertainment and local networking companies.   Innovation will be driven by a broad range of organizations and will not be dominated by only large companies.  These innovators will enable a whole new class of virtual operators on top of traditional infrastructure providers, and some of these innovators may grow to become among the most powerful companies in the world.

On the known side, the new heavies in the networking space could include 1) Amazon, which has already announced that it is entering the virtual operator area for video delivery,  2) Google Fi, creating large-scale wireless coverage areas through their own Wi-Fi hotspots and infrastructure of existing operators, and  3) Facebook  Telecommunications Infrastructure Program (TIP), which enables virtual network operators by putting open-source software into the public domain that lets these companies build networks purely through software.

What should you look for?

We expect to see an increasing number of Internet application companies announcing that they are becoming virtual ISPs and virtual mobile carriers.

What to expect from the Marconi Society in 2017

We believe that the growth and future of our organization revolves around the work of our Young Scholars and the role of the Marconi Fellows in supporting the Young Scholars and their programs.  These Young Scholars are at the forefront of creating the trends and technologies that we expect to transform communications in the upcoming years.

Accordingly, our top three goals this year focus on growing the next generation of leaders who will create the communications and networking innovations that benefit people around the world:

  • We seek an ever more diverse set of applicants for the Young Scholar award and will proactively reach out to top universities around the world. We will leverage our existing Young Scholars, Fellows and Board to connect with faculty and students to share information about the award with top engineering and science researchers globally.
  • We will expand the Celestini Project, an initiative created by our Young Scholars to mentor and encourage technical undergraduate students in developing countries to use technology to solve social problems that are critical in that area of the world. Our current project in Uganda, improving the health of pregnant women, will continue and expand and a new project in Delhi will address traffic congestion and safety issues.
  • We will reach out to actively encourage educators to make use of the growing content on the Marconi Society website to inspire young people to follow science and technology paths to success.

We look forward to welcoming a new cohort of Young Scholars and a new Marconi Fellow to join us in our work this year.